Reactions
- in the community space Musicverse
Happy that our good partner and friendly platform Faiver NFT is near to the launch of the NFT Marketplace where everyone can mint NFTs. It brings creators another way of monetization of their art. #partnership #PublMe #Faiver #NFT #marketplace #beta #blockchain #platforms #community #network #Space #artists #creators #integration
New type of afterparty at #MWMBerlin #RaveSpace
- in the community space Music from Within
Some #Music #News. Liking this thing, hope to find time for the interesting one #MusicVideo #metaverse #Game #News
Enter the metaverse, Yndi and ill peach digitize their music - IDOL
idol.ioTaking notes on IDOL’s most creative digital release campaigns. Yndi’s “Noir” music video turned video game, and ill peach’s metaverse.
Going to Berlin #MostWantedMusic #MWMBerlin #Music #MusicBusiness #musictech #PublMe online
Programme - Most Wanted: Music 2021 | The Berlin Hybrid Music Business Conference
mwm-berlin.deMost Wanted: Music 2021 running on 26-28 October – after a challenging 18 months, the Most Wanted: Music - Berlin's hybrid music business conference returns with its sights set firmly on #change. %
#MusicTectonics #musictech Conference 2021. Meet you there online 🤓
Home | Music Tectonics Conference 2021
sites.grenadine.coMusic Tectonics unites music tech innovators across industry boundaries to share ideas and get business done. In 2021, our hybrid event invites a global audience to participate in parallel universes: in the metaverse, across the planet, and on a carousel by the sea.
Whole #Facebook, #Instagram, #Whatsapp fell down recently. Yesterday it was #Telegram blackout. Now this: " #Twitter is temporarily over capacity. Please try again later". What's next?
- in the community space Musicverse
That’s very important step of #Soundbetter buying itself back from #Spotify, which is not simple step as it seems #News
- in the community space Musicverse
My new single Tutti Frutti by VLCAM is coming 21/09/21. Pre-release will be available soon also being available for streaming on PublMe - Explore exclusively, specially for registered Space community network members starting from 1st of September. #TuttiFrutti #VLCAM #Release #Music #OfficialMusicLeak #PublMe #PublMeExplore #Space 😎 😉
PublMe - Explore Music, Stream, Socialize, Monetize
explore.publme.comFor everyone. Really! Music social network for music lovers, artists, bands, indie labels, musicians . Connect with fans, discover new music, and share the music you love with your friends.
- in the community space Education
Life in space: Preparing for an increasingly tangible realityAs a not-so-distant future that includes space tourism and people living off-planet approaches, the MIT Media Lab Space Exploration Initiative is designing and researching the activities humans will pursue in new, weightless environments.
Since 2017, the Space Exploration Initiative (SEI) has orchestrated regular parabolic flights through the ZERO-G Research Program to test experiments that rely on microgravity. This May, the SEI supported researchers from the Media Lab; MIT's departments of Aeronautics and Astronautics (AeroAstro), Earth, Atmospheric and Planetary Sciences (EAPS), and Mechanical Engineering; MIT Kavli Institute; the MIT Program in Art, Culture, and Technology; the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL); the John A. Paulson School of Engineering and Applied Sciences (SEAS) at Harvard University; the Center for Collaborative Arts and Media at Yale University; the multi-affiliated Szostak Laboratory, and the Harvard-MIT Program in Health Sciences and Technology to fly 22 different projects exploring research as diverse as fermentation, reconfigurable space structures, and the search for life in space.
Most of these projects resulted from the 2019 or 2020 iterations of MAS.838 / 16.88 (Prototyping Our Space Future) taught by Ariel Ekblaw, SEI founder and director, who began teaching the class in 2018. (Due to the Covid-19 pandemic, the 2020 flight was postponed, leading to two cohorts being flown this year.)
“The course is intentionally titled ‘Prototyping our Sci-Fi Space Future,’” she says, “because this flight opportunity that SEI wrangles, for labs across MIT, is meant to incubate and curate the future artifacts for life in space and robotic exploration — bringing the Media Lab's uniqueness, magic, and creativity into the process.”
The class prepares researchers for the realities of parabolic flights, which involves conducting experiments in short, 20-second bursts of zero gravity. As the course continues to offer hands-on research and logistical preparation, and as more of these flights are executed, the projects themselves are demonstrating increasing ambition and maturity.
“Some students are repeat flyers who have matured their experiments, and [other experiments] come from researchers across the MIT campus from a record number of MIT departments, labs, and centers, and some included alumni and other external collaborators,” says Maria T. Zuber, MIT’s vice president for research and SEI faculty advisor. “In short, there was stiff competition to be selected, and some of the experiments are sufficiently far along that they’ll soon be suitable for spaceflight.”
Dream big, design bold
Both the 2020 and 2021 flight cohorts included daring new experiments that speak to SEI’s unique focus on research across disciplines. Some look to capitalize on the advantages of microgravity, while others seek to help find ways of living and working without the force that governs every moment of life on Earth.
Che-Wei Wang, Sands Fish, and Mehak Sarang from SEI collaborated on Zenolith, a free-flying pointing device to orient space travelers in the universe — or, as the research team puts it, a 3D space compass. “We were able to perform some maneuvers in zero gravity and confirm that our control system was functioning quite well, the first step towards having the device point to any spot in the solar system,” says Sarang. “We'll still have to tweak the design as we work towards our ultimate goal of sending the device to the International Space Station!”
Then there’s the Gravity Loading Countermeasure Skinsuit project by Rachel Bellisle, a doctoral student in the Harvard-MIT Program in Health Sciences and Technology and a Draper Fellow. The Skinsuit is designed to replicate the effects of Earth gravity for use in exercise on future missions to the moon or to Mars, and to further attenuate microgravity-induced physiological effects in current ISS mission scenarios. The suit has a 10-plus-year history of development at MIT and internationally, with prior parabolic flight experiments. Skinsuit originated in the lab of Dava Newman, who now serves as Media Lab director.
“Designing, flying, and testing an actual prototype is the best way that I know of to prepare our suit designs for actual long-term spaceflight missions,” says Newman. “And flying in microgravity and partial gravity on the ZERO-G plane is a blast!”
Alongside the Skinsuit are two more projects flown this spring that involve wearables and suit prototypes: the Peristaltic Suit developed by Media Lab researcher Irmandy Wicaksono and the Bio-Digital Wearables or Space Health Enhancement project by Media Lab researcher Pat Pataranutaporn.
“Wearables have the potential to play a critical role in monitoring, supporting, and sustaining human life in space, lessening the need for human medical expert intervention,” Pataranutaporn says. “Also, having this microgravity experience after our SpaceCHI workshop ... gave me so many ideas for thinking about other on-body systems that can augment humans in space — that I don’t think I would get from just reading a research paper.”
AgriFuge, from Somayajulu Dhulipala and Manwei Chan (graduate students in MIT's departments of Mechanical Engineering and AeroAstro, respectively), offers future astronauts a rotating plant habitat that provides simulated gravity as well as a controllable irrigation system. AgriFuge anticipates a future of long-duration missions where the crew will grow their own plants — to replenish oxygen and food, as well as for the psychological benefits of caring for plants. Two more cooking-related projects that flew this spring include H0TP0T, by Larissa Zhou from Harvard SEAS, and Gravity Proof, by Maggie Coblentz of the SEI — each of which help demonstrate a growing portfolio of practical “life in space” research being tested on these flights.
The human touch
In addition to the increasingly ambitious and sophisticated individual projects, an emerging theme in SEI’s microgravity endeavor is a focus on approaches to different aspects of life and culture in space — not only in relation to cooking, but also architecture, music, and art.
Sanjana Sharma of the SEI flew her Fluid Expressions project this spring, which centers around the design of a memory capsule that functions as both a traveler’s painting kit for space and an embodied, material reminder of home. During the flight, she was able to produce three abstract watercolor paintings. “The most important part of this experience for me,” she says, “was the ability to develop a sense of what zero gravity actually feels like, as well as how the motions associated with painting differ during weightlessness.”
Ekblaw has been mentoring two new architectural projects as part of the SEI’s portfolio, building on her own TESSERAE work for in-space self-assembly: Self Assembling Space Frames by SEI’s Che-Wei Wang and Reconfigurable space structures by Martin Nisser of MIT CSAIL. Wang envisions his project as a way to build private spaces in zero-gravity environments. “You could think of it like a pop-up tent for space,” he says. “The concept can potentially scale to much larger structures that self-assemble in space, outside space stations.”
Onward and upward
Two projects that explore different notions of the search for life in space include Ø-scillation, a collaboration between several scientists at the MIT Kavli Institute, Media Lab, EAPS, and Harvard; and the Electronic Life-detection Instrument (ELI) by Chris Carr, former MIT EAPS researcher and current Georgia Tech faculty member, and Daniel Duzdevich, a postdoc at the Szostak Laboratory.
The ELI project is a continuation of work within Zuber’s lab, and has been flown on previous flights. “Broadly, our goals are to build a low-mass life-detection instrument capable of detecting life as we know it — or as we don't know it,” says Carr. During the 2021 flight, the researchers tested upgraded hardware that permits automatic real-time sub-nanometer gap control to improve the measurement fidelity of the system — with generally successful results.
Microgravity Hybrid Extrusion, led by SEI’s mission integrator, Sean Auffinger, alongside Ekblaw, Nisser, Wang, and MIT Undergraduate Research Opportunities Program student Aiden Padilla, was tested on both flights this spring and works toward building in situ, large-scale space structures — it’s also one of the selected projects being flown on an ISS mission in December 2021. The SEI is also planning a prospective "Astronaut Interaction" mission on the ISS in 2022, where artifacts like Zenolith will have the chance to be manipulated by astronauts directly.
This is a momentous fifth anniversary year for SEI. As these annual flights continue, and the experiments aboard them keep growing more advanced, researchers are setting their sights higher — toward designing and preparing for the future of interplanetary civilization.
Life in space: Preparing for an increasingly tangible reality
news.mit.eduMIT Media Lab's Space Exploration Initiative tests latest round of diverse research projects on two zero-gravity flights. These projects range from architecture, to wearables, to cooking and art, in preparation for life in space.
- in the community space Education
There’s a symphony in the antibody protein the body makes to neutralize the coronavirusThe pandemic reached a new milestone this spring with the rollout of Covid-19 vaccines. MIT Professor Markus Buehler marked the occasion by writing “Protein Antibody in E Minor,” an orchestral piece performed last month by South Korea’s Lindenbaum Festival Orchestra. The room was empty, but the message was clear.
“It’s a hopeful piece as we enter this new phase in the pandemic,” says Buehler, the McAfee Professor of Engineering at MIT, and also a composer of experimental music.
“This is the beginning of a musical healing project,” adds Hyung Joon Won, a Seoul-based violinist who initiated the collaboration.
“Protein Antibody in E Minor” is the sequel to “Viral Counterpoint of the Spike Protein,” a piece Buehler wrote last spring during the first wave of coronavirus infections. Picked up by the media, “Viral Counterpoint” went global, like the virus itself, reaching Won, who at the time was performing for patients hospitalized with Covid-19. Won became the first in a series of artists to approach Buehler about collaborating.
At Won’s request, Buehler adapted “Viral Counterpoint” for the violin. This spring, the two musicians teamed up again, with Buehler translating the coronavirus-attacking antibody protein into a score for a 10-piece orchestra.
The two pieces are as different as the proteins they are based on. “Protein Antibody” is harmonious and playful; “Viral Counterpoint” is foreboding, even sinister. “Protein Antibody,” which is based on the part of the protein that attaches to SARS-CoV-2, runs for five minutes; “Viral Counterpoint,” which represents the virus’s entire spike protein, meanders for 50.
Markus J. Buehler · Protein Antibody in E minor
The antibody protein’s straightforward shape lent itself to a classical composition, says Buehler. The intricate folds of the spike protein, by contrast, required a more complex representation.
Both pieces use a theory that Buehler devised for translating protein structures into musical scores. Both proteins — antigen and pathogen — have 20 amino acids, which can be expressed as 20 unique vibrational tones. Proteins, like other molecules, vibrate at different frequencies, a phenomenon Buehler has used to “see” the virus and its variants, capturing their complex entanglements in a musical score.
In work with the MIT-IBM Watson AI Lab and PhD student Yiwen Hu, Buehler discovered that the proteins that stud SARS-Cov-2 vibrate less frequently and intensely than its more lethal cousins, SARS and MERS. He hypothesizes that the viruses use vibrations to jimmy their way into cells; the more energetic the protein, the deadlier the virus or mutation.
“As the coronavirus continues to mutate, this method gives us another way of studying the variants and the threat they pose,” says Buehler. “It also shows the importance of considering proteins as vibrating objects in their biological context.”Translating proteins into music is part of Buehler’s larger work designing new proteins by borrowing ideas from nature and harnessing the power of AI. He has trained deep-learning algorithms to both translate the structure of existing proteins into their vibrational patterns and run the operation in reverse to infer structure from vibrational patterns. With these tools, he hopes to take existing proteins and create entirely new ones targeted for specific technological or medical needs.
The process of turning science into art is like finding another “microscope” to observe nature, says Buehler. It has also opened his work to a broader audience. More than a year after “Viral Counterpoint’s” debut, the piece has racked up more than a million downloads on SoundCloud. Some listeners were so moved they asked Buehler for permission to create their own interpretation of his work. In addition to Won, the violinist in South Korea, the piece was picked up by a ballet company in South Africa, a glass artist in Oregon, and a dance professor in Michigan, among others.
A “suite” of homespun ballets
The Joburg Ballet shut down last spring with the rest of South Africa. But amid the lockdown, “Viral Counterpoint” reached Iain MacDonald, artistic director of Joburg Ballet. Then, as now, the company’s dancers were quarantined at home. Putting on a traditional ballet was impossible, so MacDonald improvised; he assigned each dancer a fragment of Buehler’s music and asked them to choreograph a response. They performed from home as friends and family filmed from their cellphones. Stitched together, the segments became “The Corona Suite,” a six-minute piece that aired on YouTube last July.
In it, the dancers twirl and pirouette on a set of unlikely stages: in the stairwell of an apartment building, on a ladder in a garden, and beside a glimmering swimming pool. With no access to costumes, the dancers made do with their own leotards, tights, and even boxer briefs, in whatever shade of red they could find. “Red became the socially-distant cohesive thread that tied the company together,” says MacDonald.
MacDonald says the piece was intended as a public service announcement, to encourage people to stay home. It was also meant to inspire hope: that the company’s dancers would return to the stage, stay mentally and physically fit, and that everyone would pull through. “We all hoped that the virus would not cause harm to our loved ones,” he says. “And that we, as a people, could come out of this stronger and united than ever before.”
A Covid “sonnet” cast in glass
Jerri Bartholomew, a microbiologist at Oregon State University, was supposed to spend her sabbatical last year at a lab in Spain. When Covid intervened, she retreated to the glass studio in her backyard. There, she focused on her other passion: making art from her research on fish parasites. She had previously worked with musicians to translate her own data into music; when she heard “Viral Counterpoint” she was moved to reinterpret Buehler’s music as glass art.
She found his pre-print paper describing the sonification process, digitized the figures, and transferred them to silkscreen. She then printed them on a sheet of glass, fusing and casting the images to create a series of increasingly abstract representations. After, she spent hours polishing each glass work. “It’s a lot of grinding,” she says. Her favorite piece, Covid Sonnet, shows the spike protein flowing into Buehler’s musical score. “His musical composition is an abstraction,” she says. “I hope people will be curious about why it looks and sounds the way it does. It makes the science more interesting.”
Translating a lethal virus into movement
Months into the pandemic, Covid’s impact on immigrants in the United States was becoming clear; Rosely Conz, a choreographer and native of Brazil, wanted to channel her anxiety into art. When she heard “Viral Counterpoint,” she knew she had a score for her ballet. She would make the virus visible, she decided, in the same way Buehler had made it audible. “I looked for aspects of the virus that could be applied to movement — its machine-like characteristics, its transfer from one performer to another, its protein spike that makes it so infectious,” she says.
“Virus” debuted this spring at Alma College, a liberal arts school in rural Michigan where Conz teaches. On a dark stage shimmering with red light, her students leaped and glided in black pointe shoes and face masks. Their elbows and legs jabbed at the air, almost robotically, as if to channel the ugliness of the virus. Those gestures were juxtaposed by “melting movements” that Rosely says embody the humanity of the dancer. The piece is literally about the virus, but also the constraints of making art in a crisis; the dancers maintained six feet of distance throughout. “I always tell my students that in choreography we should use limitation as possibility, and that is what I tried to do,” she says.
Back at MIT, Buehler is planning several more “Protein Antibody” performances with Won this year. In the lab, he and Hu, his PhD student, are expanding their study of the molecular vibrations of proteins to see if they might have therapeutic value. “It’s the next step in our quest to better understand the molecular mechanics of the life,” he says.
There’s a symphony in the antibody protein the body makes to neutralize the coronavirus
news.mit.eduMIT Professor Markus Buehler has translated the coronavirus antibody protein into music. "Protein Antibody in E Minor" was performed this spring by South Korea's Lindenbaum Festival Orchestra.
- in the community space Education
Navigating uncertainty through songIt was his first week on campus, and like most first-year students, Alberto Naveira felt overwhelmed. On top of the usual college fears, he felt trapped between two worlds — his familiar, small, Catholic high school in Puerto Rico versus his new life as an MIT student in Cambridge.
To regain a sense of comfort, Naveira chose to stick with the things he knew well. He spent his time with other Puerto Rican students. He declared a major in biological engineering to continue pursuing his lifelong goal of being a physician. Throughout the transition, Naveira held on to his past to stay grounded. “I was never the type of person to try new things. Suddenly, here I was in a completely different environment, language, and culture. I didn’t know what to do,” he recalls.
As the year went on, Naveira watched as his Puerto Rican classmates grew apart to find new groups of their own. Yet, he struggled to decide where he belonged. By the time he was a sophomore, Naveira knew he was lonely and needed a change. He thought back to high school, during moments when he felt most connected to a community. Most of these memories revolved around singing in his school’s choir. He realized he could revisit his passion by devoting himself to the Chorallaries of MIT, the Institute’s oldest co-ed student a capella group.
After joining, Naveira realized that getting to know members would require him to become more than just a performer. When the president position became available, Naveira realized this was his chance to step up. The demanding role immediately required him to spend countless hours with the group. “I started to feel closer to the others after we spent a good deal of time together coordinating performances. It was through these troubleshooting challenges that we began to actually bond,” he says.
As president, Naveira sought to make important changes to help newcomers like himself feel more welcomed. Along with planned social events, he focused on encouraging more casual get-togethers. “We would often go to the dining halls to catch dinner or brunch together. After performances, I always made sure that we’d acknowledge our accomplishments by having a celebration together,” he says. “They were little things, but I think they allowed us to become closer.”
Naveira also united members by facilitating conversations about the group’s shared traditions and values. When members advocated for new ideas, Naveira found himself championing their causes. “It was brought to my attention that our traditional song had lyrics that were heteronormative and lacked consent. There were also unnecessarily strict rules for the male performance dress code. By talking it through, we were able to make changes that were both fair and true to our customs.”
Throughout the year, Naveira began to see changes in himself as he developed into the role. He found himself speak up without fear, eager to listen and share his ideas. He was finally breaking out of his shell. “It took a while before I was able to confidently go in front of older members and make decisions. But the more time I spent on it, the better I got at projecting myself,” he says.
While coordinating the group came with challenging moments, Naveira grew to truly appreciate teamwork over singing solo. “There’s something to be said about living music as a social experience,” he says. “Like when you make eye contact with someone during a performance and there’s this shared intense emotion. It’s unlike anything else. You can’t have that on your own.”
Today, Naveira continues to be part of the Chorallaries as a performer, arranger, and audio mixer. Although he now feels at home at MIT, Naveira acknowledges that the process took dedication and self-discovery. He tries to spread this message to other struggling students he tutors through the Talented Scholars Resource Room (TSR^2) in the Office of Minority Education. “As I dug deeper into the communities that shared my interests, I started to feel more at home here,” he shares. “I try to emphasize this to my students whenever I can. If you feel like you haven’t found your place yet, it just takes some time.”
Naveira has also used his time in college to expand his original academic interest in medicine. He says the variety in his courses has shown him new ways of thinking, as well as career alternatives to becoming a physician. His favorite course, 20.309 (Instrumentation and Measurement for Biological Systems), encouraged him to investigate biology by applying principles from other engineering disciplines. “The interdisciplinary nature of the class showed me how medicine expands into other fields. We learned how something like signal processing can be applied to everything from medicine to music,” says Naveiro. “It blew my mind and made me rethink what I know.”
Over the past few months, Naveira has focused less on sticking to a defined path and more on pursuing what he loves. Stepping beyond music performance, he is currently pursuing a second bachelor’s degree in music production at Berklee College of Music. His new skills were used to arrange the Chorallaries’ most recent virtual performance, which won first place in the 2021 ICAA Northeastern Quarterfinal. Naveira plans on continuing to pursue music even after graduation. “Regardless of where I end up, I’m certain that I’ll never be happy unless music is part of my life. It’s something I truly value,” he says.
He also remains open to all types of career paths in medicine. Naveira loves the idea of continuing to apply knowledge from different disciplines to rethink medical problems. “The more I learn, the harder it is to choose a career in a specific field,” Naveira explains. “That’s something I never expected. I always knew that MIT would be a great place for me to grow as a researcher. But I never expected to grow as a musician, a tutor, a friend, and a person in general.”
“This past year has shown me that nothing is guaranteed. Life will always be full of uncertainty and I’ll be forced to try new things. But I feel that, with the right people by my side, I can handle anything.”
Navigating uncertainty through song
news.mit.eduPerforming with the a capella group the Chorallaries of MIT, and becoming its president, helped senior and biological engineering major Alberto Naveira break out of his shell and feel at home at the Institute.
Woow Elgg